
MODULE 3 PART B

STRING

String
►
►

►

►

►

Sequence of characters that is treated as a single data item..
String is represented using double quotation marks.

 Examples : “Hello world” , “xyz123@” , “Good”

Strings in C are represented by array of characters.

The end of the string is marked with a special character, the null
character, which is simply the character with the ASCII value 0.

‘\0’ represents the end of the string. It is also referred as String
terminator & Null Character

Declaration of string
► General form for declaration of a string variable:

char string_name[size];
Example:
 char city[10];
 char name[30];

Initialization of string
► Two forms are there:
Form1 : char city [9] = “NEW YORK”;

Size = 8+1

Form2: char city [9] = {‘N’,’E’,’W’,’ ‘,’Y’,’O’,’R’,’K’,’\0’};

Initialization of string

char city [] = “NEW YORK”;
Size = 8+1 (Automatically determined by compiler)

char city [] = {‘N’,’E’,’W’,’ ‘,’Y’,’O’,’R’,’K’,’\0’};
Size = 8+1 (Automatically determined by compiler)

 N E W Y O R K \0City

Char string[10] = “GOOD”;

Other Declarations that results Error

Example 1: char string[3] = “good”;
Example 2: char string[5] ; //Cannot Separate the initialization from declaration
 string = “good”;

Example 3: char s1[4] = “abc”;
 char s2[4];
 s2 = s1; //Array name cannot be used as left operand of assignment
operator

Storing the strings in memory

►

►

►

►

A string is stored in array, the name of the string is a
pointer to the beginning of the string.
The character requires only one memory location.
If we use one-character string it requires two
locations.
The difference is shown below,

Reading strings from terminal

► String can be read from the user by using three ways:

 a) scanf() function
 b) gets() function
 c) getchar() function

Using Scanf

► Used with %s format specification

 char address[10]
 scanf (“%s”, address);

Here don’t use “&” because name of string is a pointer to array.

The problem with scanf() is that it terminates its input on the
first white space it finds.

#include<stdio.h>
void main()
{
char name[10];
printf(“Enter the name:”);
scanf(“%s”,name);
printf(“Name is %s”,name);
}

Enter the name: Dennis Richie
Name is Dennis

Using Scanf
► Used with %ws format specification

 char address[10]
 scanf (“%ws”, address);
If w is greater or equal than number of characters typed in, the
entire string will be stored in string variable.
If w is less than number of characters typed in the string, the
excess characters will be truncated and left unread.

#include<stdio.h>
void main()
{
char name[10];
printf(“Enter the name:”);
scanf(“%5s”,name);
}

Enter the name: Dennis Richie

 D E N N I \0 ? ? ? ?

Using gets()

►

►

►

►

gets() function takes the starting address of the string which
will hold the input.
string inputted using gets() is automatically terminated with
a null character.
The C gets function is used to read a line of text from a
standard input device and store it in the String variable.
When it reads the newline character, then the C gets function
will terminate.

Enter the name: Dennis Richie
Name is Dennis Richie

Using getchar()

►

►

►

Read successive single characters from the input and
place them into a character array.
Entire line of text can be read and stored in an array.
Reading is terminated when the newline character is
entered and the null character is placed at the end of
the string.

 char ch;
 ch = getchar();

Copy one string into another and count the number of
characters copied

Writing Strings To Screen

 Using printf()

Using puts()
Using putchar()

Using printf()

► Used with %s format specification

 char address[10]
 printf (“%s”, address);

Using puts()
► Used to print the strings including blank spaces.
 puts(str);

Example:
 char message[20]=“Hello world”;
 puts(message);

Using putchar()

► To print a character on the screen.
 char ch = ‘A’;
 putchar (ch);

Putting Strings Together

►

►

►

Just as we cannot assign one string to another directly, we
cannot join two strings together by the simple arithmetic
addition.
That is, the statements such as

are not valid.
The process of combining two strings together is called
concatenation.

string3 = string1 + string2;
string2 = string1 + “hello”;

Comparison of Strings Together
►

►

►

C does not permit the comparison of two strings directly. That is, the
statements such as

 if(name1 == name2)
 if(name == “ABC”)
are not permitted.

It is therefore necessary to compare the two strings to be tested,
character by character.
The comparison is done until there is a mismatch or one of the
strings terminate into a null character, whichever occurs first.

String Handling Functions

►

►

►

►

►

►

C supports a number of string handling functions.
All of these built-in functions are aimed at performing various
operations on strings and they are defined in the header file
string.h.

strlen()
strcpy()
strcat ()
strcmp ()

strlen()

►

►

Counts and returns the number of characters in a string
excluding null character.
It takes the form

 n = strlen(string)
Example:
 char str1[] = “WELCOME”;
 int n;
 n = strlen(str1);

strcpy()
►

►

►

►

This function is used to copy one string to the other.
Its syntax is as follows:

 strcpy(string1,string2);
where string1 and string2 are one-dimensional character arrays.
This function copies the content of string2 to string1.

Example:
 char str1[] = “WELCOME”;
 char str2[] =”HELLO”;
 strcpy(str1,str2);

► A program to copy one string to another using strcpy() function

strcat ()
►

►

►

►

This function is used to concatenate two strings. i.e., it appends one
string at the end of the specified string.
Its syntax as follows:

 strcat(string1,string2);
where string1 and string2 are one-dimensional character arrays.
This function joins two strings together.

Example: Example:
 char str1[20] = “HELLO”;
 char str2[20] = ”WORLD”;
 strcat(str1,str2);

strcmp ()

► Compares two strings character by character (ASCII comparison)
and returns one of three values {-1,0,1}.

Return value Description
0 When both are equal
<0 If ASCII value of a character of the first string is less than

the ASCII value of the character of the second string
then function will return negative value

>0 If ASCII value of a character of the first string is greater
than the ASCII value of the character of the second
string then function will return positive value

Example :
int n;
char city[20] = “MADRAS”;
char town[20] = “MANGALORE”;
n = strcmp(city, town);

//ASCII value of D = 68
//ASCII value of N = 78

strrev()
► strrev() function reverses a given string in C language.

Reverse of a string
#include<stdio.h>
#include<string.h>
int main()
{
int len,i,j,temp;
char string[50];
printf("Enter the string:");
scanf("%[^\n]",string);
len = strlen(string);

for(i=0;i<len/2;i++)
{
 temp = string[i];
 string[i]=string[len-i-1];
 string[len-i-1]=temp;
 }
 printf("Reverse of the string is %s", string);
 }

Table Of Strings

Sorting a string
#include<stdio.h>
#include<string.h>
int main()
{
char str[10][50],temp[50];
 int i,j,n;
printf("Enter the no of Words to be entered:\n")
;
 scanf("%d",&n);
 printf("Enter the words:");
for(i=0;i<n;i++) //Reading
scanf("%s[^\n]",str[i]);

//Sorting
for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(strcmp(str[i],str[j])>0)
 {
 strcpy(temp,str[i]);
 strcpy(str[i],str[j]);
 strcpy(str[j],temp);
 }
 }
 }

//Printing
printf("\nIn lexicographical order: \n");
 for(i=0;i<n;i++)
 puts(str[i]);
 return 0;
}

