
MODULE 5

POINTERS

Memory organization

Pointer

► Variable that holds the memory address of the location of

another variable in the memory.

► It is a derived data type.

Example:

 int Quantity = 179;

Pointer Variable

Declaration

 syntax: datatype * pointer name;

 Pointer variable

Holds the address of another

variable that is of the specified

datatype given

Pointer variable

 datatype * pointer name

► * tells that the variable pointer name is a pointer variable

► Pointer name needs a memory location

► Pointer name points to variable of type data type.

Example : int *p; // integer pointer

 float *p // float pointer

Declaration styles

► Declared similarly as normal variables except for the addition of the

unary operator(*).

► * can appear anywhere between type name and the pointer variable

name.

 int* p; //Style 1

int* p; //Style 2

 int * p; // Style 3

Access the address of a variable

► Using & operator available in C.

► The operator & immediately preceding a variable returns

the address of the variable associated with it.

 Example : p = &quantity;

Initialize a pointer

► Assigning address of a variable to a pointer variable.

► Use assignment operator for initialization.

 Example: int quantity;

 int *p; /*declaration*/

 p = &quantity /*initialization*/

► Combination of declaration of data variable, declaration

of pointer variable and initialization of pointer variable in

single step.

 Example: int x , *p = &x;

Declaration

Initialize p to address of x

Pointer variable

► Declare pointer variable with an initial value of NULL or

zero is also possible.

 int *p = NULL;

 int *p = 0;

Accessing a variable through its pointer

► Using unary operator * called indirection or dereferencing.

 Example : int quantity, *p, n;

 quantity = 179;

 p = &quantity; // address of variable quantity

 n = *p; //Returns value at address

Example

int a= 6, b=4;

int *p,*q;

p=&a;

q=&b;

printf(“Value of a = %d”,*p);

6 4

2000 1000

a b

p q

1000 2000

2040 3000

Example: Predict the output

int a= 6, b=4;

int *p,*q;

p=&a;

q=&b;

printf(“value of a = %d”,*p);

printf(“address of a = %d”,&a);

printf(“address of a = %d”,p);

printf(“address of p = %d”,&p);

void main()

 { int x, y;

 int *ptr;

 x = 10;

 ptr = &x;

 y = *ptr;

 printf(“Value of x is %d\n\n”,x);

 printf(“%d is stored at addr %u\n”, x, &x);

 printf(“%d is stored at addr %u\n”, *&x, &x);

 printf(“%d is stored at addr %u\n”, *ptr, ptr);

 printf(“%d is stored at addr %u\n”, ptr, &ptr);

 printf(“%d is stored at addr %u\n”, y, &y);

 *ptr = 25;

 printf(“\nNow x = %d\n”,x);

}

Chain of Pointers

► A variable that is a pointer to a pointer must

be declared as:

 int **p2

main ()

 {

 int x, *p1, **p2;

 x = 100;

 p1 = &x;

p2 = &p1

printf (“%d”, **p2);

 }

Pointer Expressions

► C allows us to add integers to or subtract integers from pointers,

as well as to subtract one pointer from another.

► Pointers can also be compared using the relational operators.

Sample Programs

► Program to compute the sum of two numbers using the

concept of pointers

► Program to compute the largest of three numbers

Elements of array stored

Using pointers to access elements and address of elements in

an array

Pointers and Arrays

 int x[5] = {1, 2, 3, 4, 5};

 int *p;

 p = x; / p = &x[0];

Assigning 1-D array to a Pointer variable

Pointer Expressions

► C allows us to add integers to or subtract integers from

pointers, as well as to subtract one pointer from another.

 Example: p1 + 4

 p2 – 2

 p1 – p2

Increment/Decrement

► Post Increment

 int x[5] = {1, 2, 3, 4, 5};

 int *p;

 p = x;

 p++ ;

 printf(“%d”,*p++);

 printf(“%d”,*p);

Increment/Decrement

► Pre Increment

 int x[5] = {1, 2, 3, 4, 5};

 int *p;

 p = x;

 ++p ;

 printf(“%d”,*++p);

 printf(“%d”,*p);

 int x[5] = {1, 2, 3, 4, 5};

 int *p;

 p = x;

 p + 2 ;

 p + 3;

 printf(“%d”,*(p+2));

 printf(“%d”,*(p+3));

► Write a program using pointers to compute the sum of all

elements stored in an array.

main()

 {

 int *p, sum, i;

 int x[5] = {5,9,6,3,7};

 i = 0;

 p = x; /* initializing with base address of x */

 printf(“Element Value Address\n\n”);

 while(i < 5) or // for (i=x; i<=x+5;i++)

 {

 printf(“ x[%d] %d %u\n”, i, *p, p);

 sum = sum + *p; /* accessing array element */

 i++, p++; /* incrementing pointer */

 }

 printf(“\n Sum = %d\n”, sum);

 printf(“\n &x[0] = %u\n”, &x[0]);

 printf(“\n p = %u\n”, p);

 }

Using pointers to access elements

and address of array

► *(p+0)

► *(p+1)

► *(p+2)

► *(p+3)

► *(p+4) *(p+i)

► One dimensional array

 (x+i) /(p+i)

► We can use a array names as pointers but assigning a new
address to them is not possible.

► Example:

 int main()

 {

 int a[]={1,2,3,4,5};

 printf(“%p”,a++);

 return 0;

 }

a=a+1

Pointer to an Array int(*p)[5]

Pointers and 2D Arrays

int arr[3][4] = { {11,22,33,44},

 {55,66,77,88},

 {11,66,77,44} };

► arr points to 0th 1-D array.

(arr + 1) points to 1st 1-D array.

(arr + 2) points to 2nd 1-D array.

(arr + i) points to ith 1-D array

*(arr+i) points to the base address of the ith 1-D array.

► *(arr + i) points to the address of the 0th element of the 1-D array.

*(arr + i) + 1 points to the address of the 1st element of the 1-D array

*(arr + i) + 2 points to the address of the 2nd element of the 1-D array

► Hence we can conclude that:

► *(arr + i) + j points to the base address of jth element of ith 1-D array.

► On dereferencing *(arr + i) + j we will get the value of jth element of ith 1-D

array.

(*(*(arr + i) + j))

Pointer and character arrays

char arr[] = "Hello World"; // array version

char ptr* = "Hello World"; // pointer version

Array of pointers

Syntax : datatype *array_name[size];

Array of Strings

char arr [3][10] = {

 "spike",

 "tom",

 "jerry"

 };

Array of Pointers to Strings

char sports[5][15] = {

 "golf",

 "hockey",

 "football",

 "cricket",

 "shooting"

 };

Array of pointers:

► An array of character pointers where each pointer points to the first
character of the string or the base address of the string.

► Declaration and Initialization:

char *sports[5] = {

 "golf",

 "hockey",

 "football",

 "cricket",

 "shooting"

 };

