

Memory organization

Pointer

» Variable that holds the memory address of the location of
another variable in the memory.
» It Is a derived data type.

Example:
Int Quantity = 179;

Variable

Value

Addrass

Pointer Variable

Variable Address

quantity 5000

Declaration

syntax: datatype * pointer name;

Pointer variable

Holds the address of another
variable that is of the specified
datatype given

Pointer variable

datatype * pointer name
» * tells that the variable pointer name Is a pointer variable
» Pointer name needs a memory location
» Pointer name points to variable of type data type.

Example : int *p; // integer pointer F_k ?
float *p // float pointer

contains points to
grabage unknown location

Declaration styles

» Declared similarly as normal variables except for the addition of the
unary operator(*).

» * can appear anywhere between type name and the pointer variable
name.

Int* p;, /IStylel
Int* p; //Style 2
Int *p; [/ Style 3

Access the address of a variable

» Using & operator available in C.

» The operator & immediately preceding a variable returns
the address of the variable associated with it.

Example p= &quantity; Variable

quantity

Quantity — Variable

179 \ Value

5000 Address

Initialize a pointer

» Assigning address of a variable to a pointer variable.
» Use assignment operator for initialization.

Example: Int quantity;
Int *p; /*declaration™/
p = &quantity /*initialization*/

Quantity — Variable

Value

Address

» Combination of declaration of data variable, declaration
of pointer variable and initialization of pointer variable in

single step.
Pointer variable

Example: Intx, *p = &X;

Initialize p to address of x
Declaration

» Declare pointer variable with an initial value of NULL or
zero Is also possible.

Int *p = NULL,
Int *p = 0;

Accessing a variable through Its pointer

» Using unary operator * called indirection or dereferencing.

Example : Int quantity, *p, n;
quantity = 179;
p = &quantity; // address of variable quantity
n = *p; //Returns value at address

Example

Int a= 6, b=4; a
int *p,*q; —> 0
P
q=&D;
—— 1000

printf(“Value of a = %d”, *p);
2040

2000

2000 —
3000

Example: Predict the output

Int a= 6, b=4;

It *p,*q;

p=&a;

q=&db;

printf(“value of a = %d”, *p),
printf(“address of a = %d”’, &a);
printf(“address of a = %d”,p);
printf(“address of p = %d”’, &p);

void main()

{intx,y;

Int *ptr;

x =10;

ptr = &X;

y = *ptr;

printf(“Value of x is %d\n\n " x);

printf(“%d is stored at addr %u\n”, x, &x);
printf(“%d is stored at addr %u\n ”, *&x, &x);
printf(““%d is stored at addr %u\n ", *ptr, ptr);
printf(““%d is stored at addr %u\n ”, ptr, &ptr);
printf(““%d is stored at addr %u\n”, y, &y);
*ptr = 25;

printf(“\nNow x = %d\»n ”,x);
}

Chain of Pointers

p2

» A variable that Is a pointer to a pointer must

be declared as:

variable

value

Int **p2

main ()

{

Int X, *pl, **p2;
X = 100;

Pl = &X;

p2 = &pl

printf (“%d”, **p2);
}

Pointer Expressions

» C allows us to add integers to or subtract integers from pointers,
as well as to subtract one pointer from another.

» Pointers can also be compared using the relational operators.

Sample Programs

» Program to compute the sum of two numbers using the
concept of pointers

» Program to compute the largest of three numbers

O~ Oy B WM

Elements of array stored

#include<stdio.h>

int main()

{

}

int arr[5] = {1, 2, 3, 4, 5}, 1i;

for(i = ©8; 1 < 5; i++)

{

return ©;

("Value of arr[%d] = %d\t", i, arr[i]);

("Address of arr[%d] = %u\n", i, &arr[i]);

Value
Value
Value
Value
Value

arr[0]
arr(l]

arr[2] =

arr(3]
arr(éd]

N o= L) N =

Address
Address
Address
Address
Address

arr([0]
arr([l]
arr[2]
arr[3]
arr[4]

1297118080
1297118084

= 1297118088

1297118092
1297118096

Using pointers to access elements and address of elements In

an array
1
2 #include<stdio.h>
3
4 int main()
5- {
6 int arr[5] = {1, 2, 3, 4, 5}, 1;
-
8 for{(i = ©; 1 < 5; i++)
9 {
10 ("Value of a[%d] = %d\t", i, *(arr + 1));
11 ("Address of a[%d] = %u\n", i, arr + 1);
) }
13
14 return ©;
15 }

Value
Value
Value
Value
Value

of
of
of
of
of

a[0] =1
a[l] = 2
al2] = 3
al3] = 4
al4] =5

Address
Address
Address
Address
Address

of
of

of

al0]
all]
al2]
al3]
al4]

= 4063571264
= 4063571268
= 4063571272
= 4063571276

4063571280

Pointers and Arrays

Int X[5] = {1, 2, 3, 4, 5}; Elements —» x0) 1] x2 x3) x4
e S o S A N
’ Address — 1000 1004 1008 1012 1016
- . .~ l A
p B X1 / p N &X[O]1 Base address

Assigning 1-D array to a Pointer variable

3
a4
5
6- {
7
8

int main()

#include<stdio.h>

int arr[5] = {1, 2, 3, 4, 5}, 1i;

int “p;
p = arr;

for{(l = ©; 1 < 5; i++)

{

return ©;

("Value of a[%d]
("Address of a[%d

]

%

d\t", i, *(p + 1));
Zu\n", 1, p+ 1);

Value of a[0]
Value of al[l]
Value of alZ]
Value of al3]
Value of af[4]

Lnoees L) [=

Address
Address
Address
Address
Address

of
of
of
of
of

al0]
all]
alz]
alil
ald]

2432394160
2432394164
2432394168
2432394172
2432394176

Pointer Expressions

» C allows us to add integers to or subtract integers from
pointers, as well as to subtract one pointer from another.

Example: pl+4
P2 — 2
pl —p2

Increment/Decrement

» Post Increment

Elements - x[0] x[1] x[2] X[3] x[4]
int x[5] = {1, 2, 3, 4, 5}: vawe —= | 1 | 2 | 3 | 4 | 5
. Address —» 1000 1004 1008 1012 1016
INt *p; i
Base address
p=X;
p++ ;

printf(“%d”, *p+-+);
printf(“%d”,*p);

Increment/Decrement

» Pre Increment

Elements >~ x[0] x(1] X[2] X[3] x(4]
. . vae —= | 1 | 2 | 3 | 4 | 5
Int X[5] 5 {1’ 2’ 3’ 4’ 5}’ Address —» 1000 1004 1008 1012 1016
= 4 A
Int p1 Base address
p =X
++p ,

printf(“%d”, *++p);
printf(“%d”,*p);

INt X[5] — {1, 2, 3, 4’ 5}’ Elements - x[0] x(1] X[2] x(3] x[4]

int *p: ave —= | 1 | 2 | 3] 4 | 5

Address —» 1000 1004 1008 1012 1016
A
0 = X! Base address
D+ 2 ;
0 + 3;

printf(“%d”, *(p+2));
printf(“%d™, *(p+3));

» Write a program using pointers to compute the sum of all
elements stored In an array.

main()

{
Int *p, sum, i;
int x[5] = {5,9,6,3,7};

1 =0;

p = X; /* initializing with base address of x */
printf(“Element Value Address\n\n”);

while(i <5) or // for (I=X; I<=X+5;1++)

{

printf(* x[%d] %d %u\n”, 1, *p, p);

sum = sum + *p; /* accessing array element */
I++, p++; /* incrementing pointer */

¥

printf(“\n Sum = %d\n”, sum);

printf(“\n &x[0] = %u\n”, &x[0]);

printf(“\n p = %u\n”, p);

¥

Using pointers 1o access elements
and address of array

Elements - x[0] x[1] x[2) x3] x(4]

- *(p+0) o — [2 5 [+] 5

> *(D-I—l) Address —» lﬂlUD 1004 1008 1012 1016
Base address

> *(D+2)

» *(p+3)

> *(pt4) *(p+1)

» One dimensional array
(x+1) I(p+)

» We can use a array names as pointers but assigning a new
address to them is not possible.

» Example:
Int main()
{
int a[]={1,2,3,4,5};
printf(“%p ”,a++);
return O;

}

a=a+1

Pointer to an Array Int(*p)|[5]

#include<stdio.h>

int main()

int *p; // pointer to 1int

int (*parr)[5]; // pointer to an array of 5 integers

int arr[5]; // an array of 5 integers

{
p = arr;
parr = arr;
("Address
("Address
p++s
parr++;
("\nAfter
("Address
("Address
("Address
return ©6;

}

of p = %u\n", p);

of parr

incrementing p and parr by 1 \n\n");

%u\n", parr);

of p = %u\n", p);

of parr
of parr

%u\n", parr);
%u\n", *parr);

Address of p = 1282539200
Address of parr = 1282539200

After incrementing p and parr by 1

Address of p = 1282539204

Address of parr
Address of parr

1282539220
1282539220

Pointers and 2D Arrays

int arr[3][4] = { {11,22,33,44},
{55,66,77,88},
{11,66,77,44} };

Col O Col 1 | 2 Oth 1-D array 1st 1-D array

ﬁ ﬁ
e [[
BOEn

s |7 |ae

» arr points to Oth 1-D array.

(arr + 1) points to 1st 1-D array. ar
(arr + 2) points to 2nd 1-D array. - ﬂ
w2 = 11| 66 77] 44

(arr + 1) points to ith 1-D array
*(arr+1) points to the base address of the ith 1-D array.

*(arr + 1) points to the address of the Oth element of the 1-D array.
*(arr + 1) + 1 points to the address of the 1st element of the 1-D array
*(arr + 1) + 2 points to the address of the 2nd element of the 1-D array

Hence we can conclude that:
*(arr + 1) +) points to the base address of jth element of ith 1-D array.

On dereferencing *(arr + 1) + J we will get the value of jth element of ith 1-D
array.

(*(*@arr +1) +))

hNddress of 0O
arr[0]1[0]=11
arr[0][1]=22

hNddress of 1
arr[1] [0]=55
arr[1l][1]=66
arr[1]1[2]1=T77
arr[1] [3]1=88

Adress of 2

arr[2] [2]1=T77
arr[2][3]1=44

th array 3608971664

th array 3608971680

th array 360897169¢

Address of 0 th array 2115621456
arr[0] [0]=11
arr[0][1]=22
arr[0][2]=33
arr[0] [3]=44

" th array 2115621472
arr[1][0]=55
arr[l][1]=66
arr[1]([2]=T77
arr[1][3]=868

th array 2115621488

arr[2][1]=66
arr[2] [2]1=T7
arr[2] [3]1=44

Pointer and character arrays

char arr[] = "Hello World"; // array version

ooz 1009

12 bytes of memory is allocated to store 12 characters

char ptr* = "Hello World"; // pointer version

— . IHIIIIIIHI

a b C
Array of pointers T 10

2000 2010 2050

address /
Syntax : datatype *array_namejsize]; T 1 T

arrop 2000 2010 2050

arrop[0] arrop[1] arrop[2]

int main()

{

int *arrop[Z];

int a , b , € Nk

arrop[@] a;

arrop[1] b;

arrop[2] C;

(i =0; i< 3; i+4)
{
("Address = Value = ", arrop[i], *arrop[i]);

}

Array of Strings

char arr [3][10] = { e

||S ike"

B o +0—>ls|p|i|kfew]ololoje
tom™,

"jerry" 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

¥

i0z0 1021 1022 1023 1024 1025 1026 1027 1028 1029

Array of Pointers to Strings

char sports[5][15] = {
"golf",
"hockey",
"football”,
"cricket",

"shooting

sports[5][15]

o Lo [T [oee[eleMeeeee]e] =
' o [« [[(ool wfoo[Bo]
o Lot [o e[| [oPe[efe[efel] =

1048 nnﬂ \0 | 1063
s [nfofoft]i]n]o[o[\o]\ol\0\0f\0f\0| w7

Memory representation of an array of strings or 2-D array of characters

Array of pointers:

» An array of character pointers where each pointer points to the first
character of the string or the base address of the string.

» Declaration and Initialization:

char *sports[5] = { 1000 1004
ol //,EHIEM
! 1005 1011
"hockey”, ot 7 _rlnlelelxlelv]e
" T, sports[1] 1012 1020
fogtuT [[ole[t o[[T
"Cl'iCket", sports[3] \1021 1028
"shooting" . clr]ifelk]et]w

1037

\1029

Memory representation of array of pointers

o~ O w1 B W

11
12
13
14
15
16
17
18
19
20
21
22
23
24

#include <stdio.h>

int main(void) {

}

char “sports[5] = {

"golf",
"hockey"”,
"football”,
"cricket",
"shooting"

_ };

int r, c;

for (r =0; r <5; r++) {

o

while(*(sports[r] + ¢) != "\@') {
("sports[%d] is stored at %d\n and value is %c\n", r,(sports[r] + ¢),*(sports[r] + c));
C++;

}
}

("\n");

return 8;

sports[0] is stored

and value is g

sports[0] is stored

and value is o

sports[0] is stored

and value is 1

sports[0] 1s stored

and value is £

sports[1l] is stored
and value is h
sports[1l] is stored
and value is o
sports[1] is stored
and value is c
sports[1] 1s stored
and value is k
sports[1l] is stored
and value 1is e
sports[1l] is stored
and value is y

at

at

at

at

at

at

at

at

at

at

4196056

4196057

41956058

4196059

4196061

4196062

4196063

4196064

4196065

4196066

sports[2] is stored
and value is £
sports[2] 1s stored
and value is o
sports[2] is stored
and value 1s o
sports[2] is stored
and value is t
sports[2] is stored
and value is b
sports[2] 1s stored
and value is a
sports[2] is stored
and value is 1
sports[2] is stored
and value is 1

at

at

at

at

at

at

at

at

4196068

4196069

4196070

4196071

4196072

4196073

4196074

4196075

sports[3] 1s stored
and value is c
sports[3] is stored
and value is r
sports[3] is stored
and value is 1
sports[3] is stored
and value is c
sports[3] 1s stored
and value is k
sports[3] is stored
and value 1is e
sports[3] is stored
and value is t

at

at

at

at

at

at

at

4196077

4196078

4196079

4196080

4196081

4196082

4196083

sports[4] is stored
and value 1s s
sports[4] is stored
and value is h
sports[4] is stored
and value is o
sports[4] 15 stored
and value is o
sports[4] is stored
and value is t
sports[4] is stored
and value is 1
sports[4] is stored
and value is n
sports[4] 15 stored
and value is g

at

at

at

at

at

at

at

at

4196085

4196086

4196087

4196088

4196089

4196090

4196091

4196092

